# Analytical Hierarchical Process

For multiple-criteria decision making

## Analytical Hierarchical Process

- Choosing which criteria is more more important in multi-criteria decision making. - Process for choosing the lead concept among alternatives.

How Does AHP work?

CTQ: critical - to - quality - Identifying CTQ's of your attributes of a product customers

Tossible

CTQ's.

- Material - cost - availability - Assembly, - transportation - product - parts - Process - in-situ - Durability - mfg cost - embodied energy - repairability - resistance to - employee conditions weathing



|                    | Material Cost | Manufacturing Cost | Production Time |
|--------------------|---------------|--------------------|-----------------|
| Material Cost      | 1             |                    |                 |
| Manufacturing Cost |               | 1                  |                 |
| Production Time    |               |                    | 1               |

|                       | Material Cost | Manufacturing<br>Cost | Production Time |
|-----------------------|---------------|-----------------------|-----------------|
| Material Cost         | 1             |                       |                 |
| Manufacturing<br>Cost |               | 1                     |                 |
| Production Time       |               |                       | 1               |

#### Pair-wise comparison

- A. 1 means that criteria A and B are equally important.
- B. Three means that A is thought to be moderately more important than

Β

- C. 5 means that A is thought to be strongly more important then B
- D. 7 means that A is thought to be, or has been demonstrated to be, much more important then B
- E. 9 means A has been demonstrated to have much more important then





|                    | Material Cost | Manufacturing Cost | Production Time |
|--------------------|---------------|--------------------|-----------------|
| Material Cost      | 1             | 0.33               | 0.14            |
| Manufacturing Cost | 3             | 1                  | 3               |
| Production Time    | 5             | 0.33               | 1               |



|                    | Material Cost | Manufacturing Cost | Production Time |
|--------------------|---------------|--------------------|-----------------|
| Material Cost      | 1             | 0.33               | 0.20            |
| Manufacturing Cost | 3             | 1                  | 3               |
| Production Time    | 5             | 0.33               | 1               |
| Sum                | 9             | 1.66               | 4.14            |



|                    | Material Cost |   | Manufacturing Cost |      | Production Time |      |      |
|--------------------|---------------|---|--------------------|------|-----------------|------|------|
| Material Cost      | 1/9           | 1 | 0.11               | 0.33 | 0.19            | 0.20 | D.DY |
| Manufacturing Cost | 3/9           | 3 | 0.33               | 1    | 0-60            | 3    | 0.72 |
| Production Time    | 5/9           | 5 | 0.55               | 0.33 | 0-19            | 1    | 0.25 |
| Sum                |               | 9 |                    | 1.66 |                 | 4.14 |      |

Normalizing means dividing each element in every column by the sum of that column.

|                       | Material Cost | Manufacturing<br>Cost | Production<br>Time | Row Average /<br>Criteria weights<br>(W) |
|-----------------------|---------------|-----------------------|--------------------|------------------------------------------|
| Material Cost         | 0.11          | 0.19                  | 0.04               | 0.31                                     |
| Manufacturing<br>Cost | 0.33          | 0.60                  | 0.72               | 1.17                                     |
| Production<br>Time    | 0.55          | 0.19                  | 0.25               | 0.82                                     |
| Sum                   | 9             | 1.66                  | 4.14               |                                          |

 $\lambda_{max} = 3.27$ 

Consistency Index:  $C \cdot I = \lambda_{max} - n$ = 3.27 - 3 3-1 n-1 = 0.135